Spatial orientation and mechanical properties of the human trachea: a computed tomography study.

نویسندگان

  • Alberto Zanella
  • Massimo Cressoni
  • Daniela Ferlicca
  • Chiara Chiurazzi
  • Myra Epp
  • Cristina Rovati
  • Davide Chiumello
  • Antonio Pesenti
  • Luciano Gattinoni
  • Theodor Kolobow
چکیده

BACKGROUND The literature generally describes the trachea as oriented toward the right and back, but there is very little detailed characterization. Therefore, the aim of this study was to precisely determine the spatial orientation and to better characterize the physical properties of the human trachea. METHODS We analyzed lung computed tomography scans of 68 intubated and mechanically ventilated subjects suffering from acute lung injury/ARDS at airway pressures (Paw) of 5, 15, and 45 cm H2O. At each Paw, the inner edge of the trachea from the subglottal space to the carina was captured. Tracheal length and diameter were measured. Tracheal orientation and compliance were estimated from processing barycenter and surface tracheal sections. RESULTS Tracheal orientation at a Paw of 5 cm H2O showed a 4.2 ± 5.3° angle toward the right and a 20.6 ± 6.9° angle downward toward the back, which decreased significantly while increasing Paw (19.4 ± 6.9° at 15 cm H2O and 17.1 ± 6.8° at 45 cm H2O, P < .001). Tracheal compliance was 0.0113 ± 0.0131 mL/cm H2O/cm of trachea length from 5 to 15 cm H2O and 0.004 ± 0.0041 mL/cm H2O/cm of trachea length from 15 to 45 cm H2O (P < .001). Tracheal diameter was 19.6 ± 3.4 mm on the medial-lateral axis and 21.0 ± 4.3 mm on the sternal-vertebral axis. CONCLUSIONS The trachea is oriented downward toward the back at a 20.6 ± 6.9° angle and slightly toward the right at a 4.2 ± 5.3° angle. Understanding tracheal orientation may help in enhancing postural drainage and respiratory physiotherapy, and knowing the physical properties of the trachea may aid in endotracheal tube cuff design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

Design of Small Animal Computed Tomography Imaging for in vitro and in vivo Studies

Introduction: Mini Computed Tomography (mini-CT) was suggested in biomedical research to investigate tissues and small animals. We present designed and built a mini x-ray computed tomography (mini-CT) for small animals as well as industrial component imaging. Materials and Methods: The system used in this study includes a X-ray tube 20kV to 160kV and a flat pa...

متن کامل

Computed Tomographic Anatomy and Topography of the Lower Respiratory System of the Southern White-Breasted Hedgehog (Erinaceus concolor)

Objective- The aim of this study was preparing detailed anatomic images of the thoracic cavity of the southern white-breasted hedgehog using the non-invasive computed tomography (CT) technique.Design- Descriptive study.Animals- Five southern white-breasted hedgehog (Erinaceus concolor) which is a species native to the Middle East, Anatolia, Transcaucasia, and Iran. Since some people...

متن کامل

Assessment of X-Ray Crosstalk in a Computed Tomography Scanner with Small Detector Elements Using Monte Carlo Method

Introduction: Crosstalk is a leakage of X-ray or light produced in a matrix of X-ray detectors or array of photodiodes in one element to other elements affecting on image contrast and spatial resolution. In this study, we assessed X-ray crosstalk in a computed tomography (CT) scanner with small detector elements to estimate the effect of various parameters such as X-ray tube voltage, detector e...

متن کامل

An investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study

Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Respiratory care

دوره 60 4  شماره 

صفحات  -

تاریخ انتشار 2015